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Parametric instability is investigated for planetary gears where #uctuating sti!ness results
from the changing contact conditions at the multiple tooth meshes. The time-varying mesh
sti!nesses of the sun}planet and ring}planet meshes are modelled as rectangular waveforms
with di!erent contact ratios and mesh phasing. The operating conditions leading to
parametric instability are analytically identi"ed. Using the well-de"ned properties of
planetary gear vibration modes, the boundaries separating stable and unstable conditions
are obtained as simple expressions in terms of mesh parameters. These expressions allow one
to suppress particular instabilities by adjusting the contact ratios and mesh phasing. Tooth
separation from parametric instability is numerically simulated to show the strong impact of
this non-linearity on the response.
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1. INTRODUCTION

Mesh sti!ness variation as the number of teeth in contact changes is a primary excitation of
gear vibration and noise. This excitation exists even when the gears are perfectly machined
and assembled. In analytical gear vibration models, it is represented by time-varying mesh
sti!nesses that parametrically excite the system. This parametric excitation causes
instability under certain operating conditions. The ensuing vibration creates noise,
increases dynamic loads, and potentially damages the gear teeth and bearings [1].

Parametric instability in single-pair gears governed by a single-degree-of-freedom
Mathieu equation has been extensively investigated [2}6]. For multi-stage gear systems,
there are surprisingly few studies on parametric instabilities from multiple meshes. Tordion
and Gauvin [7] and Benton and Seireg [8] analyzed the instabilities of two-stage gear
systems with a mesh phasing between the two mesh sti!nesses. However, their instability
conclusions are contradictory. This was recently clari"ed by Lin and Parker [9] using
perturbation and numerical analyses. Lin and Parker also derived simple formulae that
allow designers to suppress particular instabilities by properly selecting contact ratios and
mesh phasing. For planetary gears (Figure 1), which have multiple time-varying mesh
sti!nesses, no systematic study on their parametric instability has been found in the
literature. August and Kasuba [10] and Velex and Flamand [11] numerically computed
dynamic responses to mesh sti!ness variations for planetary gears with three sequentially
0022-460X/02/010129#17 $35.00/0 ( 2002 Academic Press



Figure 1. Rotational degree-of-freedom model of planetary gears.
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phased planets. Their results showed the dramatic impact of mesh sti!ness variation on
dynamic response, tooth loads, and load sharing among planets. In addition, di!erent
contact ratios and phasing conditions that exist at the multiple meshes complicate the
analytical examination of planetary gear parametric instability. How these factors a!ect
instability conditions has not been investigated.

The objective of this study is to analyze parametric instability excited by multiple
time-varying mesh sti!nesses in planetary gears. The torsional vibration model used here
considers the di!erent contact ratios and planet phasing among multiple meshes, which are
critical design parameters in planetary gears. The well-de"ned modal properties of
planetary gears [12, 13] are used to derive simple expressions for instability boundaries
separating the stable and unstable regions. From these expressions, the e!ects of contact
ratios and mesh phasing are analytically determined. These results provide insight into
planetary gear designs that avoid parametric instability. In practice, planet mesh-phasing
schemes are often applied to cancel or neutralize the resonant response at speeds where the
mesh frequency is near a natural frequency [14}17]. In this same spirit, this study shows
that particular parametric instabilities can be eliminated under certain phasing conditions
that can be achieved by proper selection of design parameters. Tooth separation
non-linearity induced by parametric instability is numerically simulated and shown to have
great impact on the unstable system responses.

2. SYSTEM MODEL AND MODAL PROPERTIES

The planetary gear dynamic model used is based on the one developed by Lin and Parker
[12]. Translational degrees of freedom in that model are eliminated, and only rotational
motions of the gear bodies are considered (Figure 1). Rotational motions of the carrier, ring,
sun, and planets are denoted by h

h
, h"c, r, s, 1,2 , N, where N indicates the number of
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planets. The gear bodies are assumed rigid with moments of inertia I
c
, I

r
, I

s
, I

p
. The

sun}planet and ring}planet tooth meshes are modelled as linear springs with time-varying
sti!nesses k

sn
(t), k

rn
(t), n"1,2 , N. Damping and clearance non-linearity are not

considered in the determination of instability boundaries, though they are added later in
a numerical example for response calculation. The system's equations of motion are
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where the summation index n ranges from 1 to N. u
h
"r

h
h
h
, h"c, r, s, 1,2, N are base

radius de#ections, and r
h
is the base circle radius for the sun, ring, and planets and the radius

of the circle passing through the planet centers for the carrier. ¹
c
, ¹

r
, ¹

s
are external torques.

Each mesh sti!ness is represented by
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are mean values and k
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are time-varying components of the nth
sun}planet and ring}planet meshes. Expansion of k
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in Fourier series yields
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For spur gears, rectangular waves are often used to approximate mesh sti!ness alternating
between d and d#1 pairs of teeth in contact. Figure 2 shows the mesh sti!ness variations
k
1n
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with peak-to-peak amplitudes 2k
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, 2k
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, contact ratios c
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, and phasing angles

c
sn
¹, (c

sr
#c

rn
)¹. The sun}planet and ring}planet meshes have the identical mesh frequency

X"2n/¹. The sun}planet mesh sti!nesses between planets di!er only by a time translation
(or phase), i.e. k

sn
(t)"k

s1
(t!c

sn
¹). Likewise, k

rn
(t)"k

r1
(t!c

rn
¹) for the ring}planet

meshes. Mesh phasing between planets is determined by planet position angles t
n
and the

numbers of teeth z
s
, z

r
for the sun and ring [15]. c

sn
"t

n
z
s
/(2n) denotes the mesh phasing

between the "rst and nth sun}planet meshes (c
s1
"0); c

rn
"t

n
z
r
/(2n) is the mesh phasing

between the "rst and nth ring}planet meshes (c
r1
"0); c

sr
is the phasing between the
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Fourier coe$cients in equation (4) are
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Mesh sti!nesses depend on many parameters including the number of teeth in contact,
gear facewidth, material properties, pro"le modi"cations, and applied load [18]. Let
e
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be the relative amplitudes of mesh sti!ness variation. In the

simplest approximation, mesh sti!nesses are assumed proportional to the number of tooth
pairs in contact, that is, k
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this simplifying assumption, the nominal amplitudes of sti!ness variations are e

1
"1/(2c

s
),

e
2
"1/(2c

r
), and one obtains the explicit relation e

2
"e

1
c
s
/c

r
. In practice and in the analysis

that follows, however, e
1

and e
2

are not constrained to these &&nominal'' values but vary
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sti!ness variation amplitudes. For this modelling, we let e
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For the time-invariant case, the eigenvalue problem associated with equation (1) is
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are the natural frequencies. The vibration modes /
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are normalized as UTMU"I
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]. The natural frequencies and vibration modes have unique



PLANETARY GEAR PARAMETRIC INSTABILITY 133
properties due to the cyclic symmetry of planetary gears [12, 13]. We specialize these
properties for the case of a rotational vibration model with a "xed ring and ¸"N#2
degrees of freedom. In this case, all vibration modes can be classi"ed into one of three
categories: (1) a rigid-body mode (u

1
"0), (2) two modes with distinct natural frequencies

(u
2
, u

L
), and (3) a group of degenerate modes with multiplicity N!1 (u

3
"2"u

N`1
).

In the distinct modes, including the rigid-body mode, all planets have identical motion,

u
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1
, n"1, 2,2 , N. (8)

In the degenerate modes, the carrier, ring, and sun have no motion, and the planet rotations
satisfy
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These well-de"ned properties are valid not only for equally spaced planets with position
angles t
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"2n(n!1)/N, but also for diametrically opposed planets with t
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[13].

3. GENERAL EXPRESSIONS FOR INSTABILITY BOUNDARIES

Parametric instabilities occur when harmonics of the mesh frequency are close to
particular combinations of the natural frequencies. We determine the operating conditions
(that is, mesh frequency X and sti!ness variation amplitude e) that lead to instability when
lX+u

p
#u

g
for integer l. The results are illustrated as stable and unstable regions in the

(X, e) parameter plane (Figure 3, for example). Primary (l"1, p"q), secondary (l"2,
p"q), and combination (l"1, pOq) instabilities are of most interest as higher order
instabilities have much smaller instability regions and are unlikely to occur in practice. The
rigid-body mode (u

1
"0) is not excited under operating conditions and does not a!ect the

instabilities of other modes. Only the two distinct modes and the group of degenerate modes
are considered in what follows.

Applying the modal transformation q"Uz to equation (1) and using equation (6), the
free vibration equations become
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The general solutions of equation (12) are
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where cc represents the complex conjugate of preceding terms. Insertion of equation (14)
into equation (13) yields
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The parametric instability when lX+u
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q
is considered. Let lX"u
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where p is a detuning parameter to be determined. When u
p

and u
q
are both distinct, the
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instability boundaries are as follows [9]:
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is degenerate, the complexity of instability boundary solutions depends

on the multiplicity of the degenerate natural frequencies. We "rst study the case with
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The non-trivial solutions of equations (18) and (19) have the form
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For bounded solutions, the eigenvalues of the coe$cient matrix have non-positive real
parts, which requires
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Thus, the single-mode instability boundaries for u
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With the solutions (20) and A
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Requiring the eigenvalues of the coe$cient matrix to have non-positive real parts gives the
instability boundaries
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When the degenerate natural frequencies u
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have multiplicity m'2,

vanishing of the terms in equation (15) leading to an unbounded response for lX"2u
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yields m coupled equations
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Similar to equation (21), a 2m]2m coe$cient matrix is obtained from equation (29),
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are m]m submatrices of D(l), E(l) including rows and columns 3,2, m#2.
The p for bounded solutions is obtained by requiring the real parts of the eigenvalues of this
coe$cient matrix to be non-positive. Generally, no closed-form solution can be derived for
these single-mode instabilities, but numerical evaluation can determine p and the instability
boundaries unless D(l)
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, E(l)

sub
have special features (e.g., diagonal matrices) as discussed later.

More is possible for combination instabilities. For combination instability of distinct u
r
and

degenerate u
3
"2"u

m`2
of any multiplicity m, the same procedures as led to equation

(28) yields instability boundaries

X"

u
3
#u

r
l

$

e
l

m`3
+
q/3

J (D(l)
qr

D(l)
rq
#E(l)

qr
E(l)

rq
) /(u

r
u

3
) . (31)

All results so far apply for a general system (10) with degenerate natural frequencies.
These results reduce to simple forms when specialized to planetary gears.

4. PLANETARY GEAR PARAMETRIC INSTABILITY

The planetary gears' well-de"ned modal properties are now used to simplify the above
instability conditions to compact expressions suitable for use in applications. Expansion of
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D(l), E(l) in equation (10) gives
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phasing of planets, matrices D(l), E(l) have special features that simplify the instability
conditions. Note that the following analysis considers mesh sti!ness of any waveform as
represented by the Fourier coe$cients a, b in equation (32). As the most appropriate
analytical idealization for spur gears, rectangular waveforms (5) are used to get simpli"ed
expressions and investigate the e!ects of contact ratio and phasing.
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p
, vibration mode property (8) leads to d(p)

sn
"d(p)

s1
,

d(p)
rn
"d(p)

r1
for any planet n. Using rectangular form (5) and (32) in equation (16), the primary

instability boundaries are governed by

K(1)
pp
"A

2N

n B
2

[(d(p)
s1

)4(k
sp

sinnc
s
)2#(d(p)

r1
)4(k

rp
g sinnc

r
)2

#2k
sp

k
rp

g (d(p)
s1

d(p)
r1

)2 sin (nc
s
) sin (nc

r
) cosn (c

s
!c

r
#2c

sr
)]. (33)

Obviously, K(1)
pp
"0 when c

s
, c

r
are integers and all instabilities vanish. If c

s
, c

r
Ointeger,

a second choice to reduce the instability regions is to make the third term in equation (33)
negative by adjusting c

s
, c

r
, and c

sr
. The combination instability boundaries for two distinct

modes can be obtained from equation (17).
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For the degenerate natural frequencies u
3
"2"u

N`1
, vibration mode property (9)

results in

N
+
n/1

d(p)
sn

d(q)
sn
"

N
+
n/1

d(p)
rn

d(q)
rn
"0,

N
+
n/1

(d(p)
sn

)2"
N
+
n/1

(d(p)
rn

)2"D, p, q"3,2, N#1, pOq,

(34)

where the following identities are used to derive equation (34):

N
+
n/1

cos
2n(n!1)Z

N
"

N
+
n/1

sin
2n(n!1)Z

N
"0, for non-integer Z/N. (35)

Use of equation (34) in equation (32) gives

D(l)
pq
"E(l)

pq
"0, D(l)

pp
"(k

sp
a(l)
s1
#k

rp
ga(l)

r1
)D, E(p)

pp
"(k

sp
b(l)
s1
#k

rp
gb(l)

r1
)D, p,q"3,2,N#1.

(36)

For the simple form of D(l)
pq

, E(l)
pq

in equation (36), the eigenvalues of equation (30) can be
expressed in closed form for any multiplicity m"N!1. In this case, the single-mode
instability boundaries are the same as equation (23) with C (l)"(D(l)

pp
)2#(E(l)

pp
)2. For the

rectangular waveforms (5),

C (l)"A
2D

lnB
2

[(k
sp

sin lnc
s
)2#(k

rp
g sin lnc

r
)2

#2k
sp

k
rp

g sin(lnc
r
) sin (lnc

r
) cos ln (c

s
!c

r
#2c

sr
)]. (37)

Equation (37) applies for any number of planets N.
For the combination instability of degenerate u

3
"2"u

N`1
and distinct u

r
, use of

properties (8) and (9) in equation (32) yields

D(l)
pr
"

N
+
n/1
GC1

cosC
2n(n!1)(lz

s
#1)

N
#b

1D#C
2
cosC

2n(n!1) (lz
s
!1)

N
#b

2D
#C

3
cosC

2n(n!1)(lz
r
#1)

N
#b

3D
#C

4
cosC

2n(n!1)(lz
r
!1)

N
#b

4DH, p"3,2, N#1, (38)

where C
i
and b

i
are constants independent of n. For in-phase planet meshes (z

s
/N, z

r
/N are

integers) and l"1, equation (35) guarantees D(l)
pr
"0 and similarly E(l)

pr
"0. It follows from

equation (31) that the combination instabilities (l"1) of a distinct mode and a degenerate
mode always vanish for any N when the planet meshes are in-phase. A more general
condition for vanishing of these combination instabilities is that each of (lz

s
$1)/N,

(lz
r
$1)/NOinteger.
As an example, Figure 3 shows the instability boundaries for a planetary gear with three

equally spaced planets. The parameters and nominal natural frequencies are given in



TABLE 1

Parameters and natural frequencies of an example planetary gear with ,xed ring and
three planets

Inertias (kg) I
c
/r2

c
"6, I

s
/r2

s
"2)5, I

p
/r2

p
"2

Planet mass (kg) m
p
"4

Mesh sti!ness (N/m) k
sp
"k

rp
"108

Natural frequencies (kHz) u
1
"0, u

2
"1)212, u

3
"u

4
"1)592, u

5
"2)196

Figure 4. Mode shapes of the system in Table 1. The motion of the carrier is not shown. (a) u
2
"1212 Hz, (b)

u
3
"1592 Hz, (c) u

4
"1592 Hz, (d) u

5
"2196 Hz.
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Table 1 and the vibration modes are shown in Figure 4. The mesh phasing c
sn
"c

rn
"0,

c
sr
"1

2
and the contact ratios c

s
"1)4, c

r
"1)6. We specify e

1
"e

2
"e (i.e., g"1). The slight

downward drift in the instability regions results from natural frequency changes as e varies,
which occur because the average mesh sti!nesses depend on k

vs
and k

vr
(the central line

between the peak-to-peak mesh sti!nesses in Figure 2 are held constant). The analytical
solutions (solid lines) from equations (16), (17), (23), and (28) agree well with the numerical
solutions using the Floquet theory and numerical integration. Note that the combination
instabilities at u

2
#u

3
, u

3
#u

5
vanish because they involve the distinct (u

2
, u

5
) and

degenerate (u
3
"u

4
) natural frequencies. Figure 5(a) shows the primary instability regions

for di!erent contact ratios c
s
, c

r
; the sti!ness variation amplitude e"0)3 and phasing



Figure 5. Instability regions of the system in Table 1 for di!erent contact ratios. e"e
1
"e

2
"0)3 (g"1). The

planets are equally spaced with in-phase meshes (c
sn
"c

rn
"0). (a) c

sr
"0, (b) c

sr
"1

2
.
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c
sr
"0. All instabilities vanish when the contact ratios are integers. The size of the 2u

2
instability region is primarily a!ected by c

r
while insensitive to changes in c

s
. This is because

the dominant deformation of mode /
2

occurs in the ring}planet meshes (Figure 4). The 2u
5

instability region is mostly a!ected by c
s
because most deformation occurs in the sun}planet

meshes for this mode. The primary instability of the degenerate modes at 2u
3
"2u

4
is

in#uenced by both c
s

and c
r
. The primary instability regions are maximized for

c
s
"c

r
"1)5, which is expected from equations (33) and (37). The relative phasing c

sr
between the sun}planet and ring}planet meshes can have a major impact. When the
phasing c

sr
"1

2
(Figure 5(b)), the 2u

3
"2u

4
instability vanishes for any c

s
"c

r
because

C(l)"0 in equation (37) in this case.

4.1.2. Sequentially phased planet meshes

Here we consider equally spaced planet systems where the sun}planet and ring}planet
meshes are sequentially phased with c

sn
"(n!1)z

s
/N and c

rn
"!(n!1)z

r
/N. This case

corresponds to z
s
/N, z

r
/NO integer but (z

s
#z

r
)/N"integer. A constant phasing c

sr
exists

between the sun}planet and ring}planet meshes for each planet. Using equation (35) and the
sequential phasing, the Fourier coe$cients in equation (32) satisfy

N
+
n/1

a(l)
sn
"

N
+
n/1

a(l)
rn
"

N
+
n/1

b(l)
sn
"

N
+
n/1

b(l)
rn
"0 (39)

where lz
s
/N, lz

r
/N are non-integer. Equation (39) applies for any mesh sti!ness variation

waveform.
For distinct natural frequencies u

p
, using d

sn
"d

s1
and equation (39) in equation (32)

yields D(l)
pp
"E(l)

pp
"0. It follows from equation (16) that the primary instabilities (l"1) of

distinct modes always vanish when the planets are sequentially phased. Physically, it means
that these instabilities are not excited because the resultant modal excitations from the
sun}planet and ring}planet meshes each are zero. The secondary instabilities (l"2) of
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sn
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3
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c
rn
"[0, !2

3
, !1
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s
"1)4, c

r
"1)6, e"e

1
"e

2
(g"1), c

sr
"1
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distinct modes also vanish when 2z
s
/N, 2z

r
/N are non-integers. Similarly, for the

combination instability (l"1) of distinct u
p
and u

q
, D(1)

pp
"E(1)

pp
"0 in equation (17). Thus,

combination instabilities of two distinct modes always vanish in this case.
For instabilities involving the degenerate modes, it is di$cult to obtain simple

expressions for the instability boundaries; their instability conditions can be calculated from
equations (23), (30), and (31). A special case is the combination instability (l"1) of
degenerate u

3
"2"u

N`1
and distinct u

r
when both (z

s
$1)/N, (z

r
$1)/N are

non-integers. In this case, D(1)
pr

"E(1)
pr

"0, p"3,2, N#1 because of equations (35) and
(38), and the combination instabilities of distinct and degenerate modes vanish.

Figure 6 shows the instability boundaries for the same system as in Figure 3,
except that the three planets are sequentially phased with c

sn
"[0, 1

3
, 2
3
], c

rn
"[0, !2

3
, !1

3
].

Note that the primary, secondary, and combination instability regions vanish for the
distinct natural frequencies u

2
, u

5
; only instabilities involving the degenerate modes

u
3
"u

4
exist.

The above analyses show that contact ratios and mesh phasing signi"cantly a!ect the
operating condition instability regions. In practice, particular instabilities can be minimized
by proper selection of contact ratios and mesh phasing, which are adjusted by center
distance, diametral pitch, pressure angle, tooth addendum, numbers of teeth, and other



TABLE 2

Instability boundary solutions when the planets are equally spaced
(satisfying (z

s
#z

r
)/N"integer)

Single-mode instabilities Combination instabilities

Planet mesh Degenerate Distinct# Degenerate#
phasing Distinct mode mode distinct mode distinct mode

In-phase
z
s

N
,
z
r

N
"integer

From equation (16) From equations

(22), (23), (30)
From equation

(17)

Always vanish

Sequentially phased
z
s

N
,
z
r

N
O integer

Primary always vanish;
secondary from equation (16)
and vanish if 2z

s
/N, 2z

r
/NO

integer

From equations
(22), (23), (30)

Always vanish From equation (31)
and vanish if
(z

s
$1)/N,

(z
r
$1)/NOinteger
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parameters. The foregoing results for equally spaced planets and any mesh sti!ness
waveform (not just rectangular) are summarized in Table 2.

4.2. UNEQUALLY SPACED PLANETS

When the planets are arbitrarily spaced, the structured modal properties do not exist and
the general expressions for instability boundaries cannot be further simpli"ed. For the
practically important case of diametrically opposed planets, however, the vibration modes
retain the well-de"ned properties (8) and (9). For the sun}planet meshes, each of the N/2
pairs of diametrically opposed planets are in-phase (c

s(n`N@2)
"c

sn
) for even z

s
and

counter-phased (c
s(n`N@2)

"c
sn
#1/2) for odd z

s
. An analogous rule applies for the

ring}planet mesh phasing. Note that adjacent planets have arbitrary mesh phasing de"ned
by their circumferential position, c

sn
"t

n
z
s
/(2n), c

rn
"!t

n
z
r
/(2n), n"1,2 , N/2.

When the sun}planet and ring}planet meshes are both counter-phased (odd z
s
, z

r
),

equation (39) holds for odd l because a(l)
sn
"!a(l)

s(n`N@2)
and similar relations for a(l)

rn
, b(l)

sn
, b(l)

rn
.

Recalling the modal property (8), D(l)
pq
"E(l)

pq
"0 for distinct u

p
, u

q
and odd l. From

equations (16) and (17), primary and combination (l"1) instabilities of distinct modes
always vanish in the counter-phased case. Physically, these instabilities are eliminated
because the modal excitations from each pair of diametrically opposed planets always
cancel each other. The instability regions involving degenerate modes are obtained from
numerical evaluation of the eigenvalues of equation (30).

When pairs of opposing sun}planet or ring}planet meshes are in-phase (even z
s
or even

z
r
), no simple expression for instabilities regions is available; numerical solutions are

obtained from equations (16), (17), (30), and (31).

5. DYNAMIC RESPONSE AND CONTACT LOSS

When planetary gears operate inside an instability region, damping and non-linearities
from friction, tooth separation, etc., bound the unstable linear model motion. Figure 7(a)
shows the r.m.s. steady state planet response amplitude versus mesh frequency for the same



Figure 7. (a) Steady state r.m.s. of dynamic planet rotation versus mesh frequency X when tooth separation is
not considered. The parameters are as in Figure 3 with e"0)3. (b) The sun}planet mesh sti!ness is pre-speci"ed as
shown.

Figure 8. (a) Steady state r.m.s. of dynamic planet rotation versus mesh frequency X when tooth separation is
considered. The parameters are as in Figure 3 with e"0)3. Circles (s) indicate increasing speed X and crosses (])
indicate decreasing X. (b) Sun}planet tooth separation (k

sp
"0) occurs for X"4)5 kHz+2 u

5
.
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system as in Figure 3 and the sti!ness variation e"0)3. Rayleigh damping
C"(0)07) *M#(0)07) * K is added to system (1) and the force vector is F"[!2000 1000
0 0 0]TN. The solutions are obtained from numerical integration of equation (10) using
mesh sti!nesses in rectangular waveforms (Figure 7(b)). The instabilities near u

3
"u

4
,

2u
3
"2u

4
, and u

2
#u

5
grow to instability very slowly so that their parametric

instabilities are not apparent in Figure 7(a) (and Figure 8(a)). The instability excited by the
primary instability 2u

5
grows extremely large because tooth separation (that is, vanishing

mesh sti!ness) is not considered; the mesh sti!nesses are pre-speci"ed functions of time
(Figure 7(b)). In practice, tooth separation (clearance non-linearity) occurs for large
dynamic responses and its e!ects are dramatic. Figure 8(a) shows the response for the same
system as in Figure 7(a) but tooth separations are modelled. The mesh sti!ness k

sn
or k

rn
is

set to zero if the corresponding tooth deformation d
sn
(0 or d

rn
(0 at any step of the

integration. The response amplitude of the 2u
5

primary instability is signi,cantly reduced
from that in Figure 7(a). Moreover, a softening jump phenomenon occurs. Sun}planet tooth
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separation (k
sp
"0) is apparent in Figure 8(b) for a mesh frequency in the primary

instability region of 2u
5
. The interactions of mesh sti!ness variation and clearance

non-linearity has been studied by Kahraman and Blankenship [19, 20] for single-mesh
gears. The e!ects on multi-mesh planetary gears need additional investigation.

6. CONCLUSIONS

This work analytically investigates the parametric instabilities from mesh sti!ness
variation in planetary gears. Instability boundaries are obtained for systems with equally
spaced (summarized in Table 2) and diametrically opposed planets. The main points are:

(1) Using the structured properties of vibration modes, the instability boundaries are
reduced to simple, closed-form expressions for several planet-phasing conditions. The
instability boundaries are sensitive to contact ratios and mesh phasing, and the simple
expressions are useful in design to suppress instabilities by adjusting these
parameters.

(2) Certain parametric instabilities always vanish for particular mesh-phasing
conditions, including (1) combination instabilities of distinct and degenerate modes
when equally spaced planets are in-phase, (2) primary and combination instabilities
of distinct modes when equally spaced planets are sequentially phased, and (3)
primary and combination instabilities of distinct modes when diametrically opposed
planets are counter-phased. These features come from the well-de"ned modal
properties and apply to any form of mesh sti!ness variation.

(3) Instability boundaries relate directly to mesh deformations in the vibration modes.
The mesh parameters (e.g., c

s
and c

r
) that are most critical to a particular instability

are those of the tooth meshes with dominant deformations in the unstable vibration
modes.

(4) When a parametric instability is excited under operating condition's, tooth
separation occurs. This non-linearity dramatically changes the dynamic response.
More analysis is needed to reveal the interaction of mesh sti!ness variation and
backslash non-linearity in multi-mesh gear systems.
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